
One	Knight	in	Product	-	E179	-	Dave	Farley
Thu,	Jun	22,	2023	5:34PM 50:57

SUMMARY	KEYWORDS

continuous	delivery,	software,	work,	organisations,	build,	people,	good,	teams,	product,	talk,	developers,
ideas,	software	development,	organise,	users,	engineering,	bit,	companies,	technical,
executable	specification

SPEAKERS

Dave	Farley,	Jason	Knight

Jason	Knight 00:00
Hello,	and	welcome	to	the	show.	I'm	your	host,	Jason	Knight.	And	on	each	episode	of	this
podcast,	I'll	be	having	inspiring	conversations	with	passionate	people	in	and	around	the
wonderful	world	of	Product	Management.	If	that	sounds	like	your	kind	of	party,	why	not	snag
yourself	an	invite	and	join	me	and	some	of	the	finest	thought	leaders	and	practitioners	in	the
world	on	https://www.oneknightinproduct.com,	where	you	can	sign	up	to	the	newsletter,
subscribe	on	your	favourite	podcast	app	or	follow	the	podcast	on	social	media,	and	a	guarantee
you	never	miss	another	episode	again.	On	tonight's	episode,	we	ask	ourselves	what	is
continuous	delivery?	And	why	is	it	the	best	way	to	build	quality	products	and	build	them	fast?	is
continuous	delivery	something	product	managers	can	help	with?	And	how	can	we	sell	the
benefits	of	Best	in	Class	software	development	practices	to	non	technical	leadership	who	see	it
all	as	just	geekery?	And	can	we	prove	it	makes	any	difference	to	our	product	success	at	all?	For
answers	to	all	these	questions	and	much	more,	please	join	us	on	One	Knight	in	Product.

Jason	Knight 01:04
So	my	guest	tonight	is	Dave	Farley	Dave's	a	legendary	software	development	guru,	consultant,
trainer,	YouTuber	and	author,	who	says	has	been	having	fun	with	computers	for	nearly	40
years.	Me	too,	Dave.	But	if	you're	anything	like	me,	you'd	have	started	out	with	10	PRINT
"DAVE	IS	GREAT"	20	GOTO	10.	Dave's	an	aeroplane	enthusiast	who	likes	to	compete	in
aerobatics	competitions,	but	he's	also	dive	bombing	and	training	his	sights	on	poor	software
development	practices,	telling	us	all	that	we	need	to	get	good	at	continuous	delivery.	No,	no,
no,	not	your	Amazon	Prime	habit.	But	making	sure	all	of	our	products	are	always	ready	to
release	and	we	automate	away	all	the	unpleasant	bits.	Hi,	Dave,	how	are	you	tonight?

Dave	Farley 01:36
Oh,	great.	Thank	you.	That's	some	introduction.	And	mostly	correct.

D



Jason	Knight 01:43
Mostly!?	I'm	interested	in	what	wasn't	correct.	Was	it	the	first	program	that	you	wrote?

Dave	Farley 01:47
No,	that	was	pretty	close.

Jason	Knight 01:49
So	were	you	a	ZX	Spectrum	guy	to	start	with	then?	Certainly,	I	was.

Dave	Farley 01:52
That	was	my	second	computer.	Third	computer.	So	I	started	with	ZX81,	then	a	PET	for	a	little
while	with	6502	processor	in	a	little	tiny	nine	inch	screen.	And	then	I	graduated	to	the
Spectrum.

Jason	Knight 02:11
Oh,	there	you	go.	And	the	rest	is	history.	Well,	you're	talking	to	a	Your	Sinclair	Star	Letter
winner	here.	So	you	know,	we're	in	the	presence	of	greatness	between	us.	But	anyway,	so	let's
get	down	to	business.	First	things	first,	people	might	know	you	from	your	book,	or	quite
possibly	from	your	YouTube	channel.	But	you're	also	currently	working	as	a	consultant.	So	what
are	you	working	on	day	to	day	with	your	consultancy,	Continuous	Delivery	Ltd?

Dave	Farley 02:31
So	my	consultancy	is	largely	about	helping	people	to	adopt	Continuous	Delivery	particularly...
but	what	I	think	of	just	better	software	engineering	practices,	on	the	whole,	mostly	these	days,
partly	through	the	success	of	my	books,	and	my	YouTube	channel.	I	work	for	large	companies
who	I	can't	name	we're	talking	about	afterwards.	But	lots	of	big	organisations,	usually,	and
often	with	interestingly	challenging	problems.	One	of	the	companies	that	I	worked	with	a	few
years	ago,	for	example,	was	Siemens	healthcare,	building	medical	devices,	and	communicating
with	them	in	the	cloud.	So	helping	them	to	adopt	some	of	the	practices	and	bring	some	of	the
engineering	stuff	that	I	talked	about,	to	those	kinds	of,	interestingly,	complicated	sorts.

Jason	Knight 03:20
Well,	I	was	gonna	say	it	does	sound	like	big	companies	like	that	are	probably	almost	like	the
poster	children	for	the	types	of	problems	that	you	call	out	and	your	books	and	with	your	blogs,
and	with	your	YouTubes	as	well	like	these	legacy	products	that	have	been	going	for	a	long

D

D

D



time,	maybe	not	even	called	products.	They're	just	these	things	that	exist,	and	they've	got	this
accumulated	organisational	and	technical	debt	over	the	course	of	10-20	years	or	whatever.	Do
you	tend	to	walk	into	quite	a	lot	of	those	types	of	companies?

Dave	Farley 03:44
I	walk	into	a	lot	of	those	kinds	of	companies,	but	they're	not	the	only	ones.	I	mean,	continuous
delivery,	is,	I	think	this	is	not	an	extravagant	plan,	continuous	delivery	state	of	the	art	for
software	development.	It's	what	the	best	organisations	at	software	development	in	the	world
do.	And	so	it	works,	whether	you're	building	literally	spacecraft,	medical	devices,	world	class,
you	know,	web	companies,	banks,	cars,	almost	anything	you	can	think	of,	if	you	want	to	build
software,	the	way	to	do	it	better	and	faster,	is	through	continuous	delivery.	So	I	mean,
relatively	high	demand	as	a	consultant,	and	I'm	over	time,	you	know,	I've	become	probably
slightly	more	bullish	in	the	way	that	I	talk	about	it.

Jason	Knight 04:31
Well,	we'll	talk	about	the	bullishness	in	a	minute,	but	want	to	talk	about	the	aforementioned
book,	which	I've	got,	it's	obviously	really	good	read	gets	very	technical	towards	some	bits	of	it.
But	I	think	just	as	a	general	piece	of	writing,	it	definitely	talks	about	a	lot	of	issues	I've	seen	a
lot	of	times	in	my	career.	You've	obviously	got	the	YouTube	channel	where	you	put	a	lot	of	clips
up	talking	about	some	of	the	themes	in	the	book	and	how	to	get	the	best	out	of	software
development.	But	there's	a	lot	of	people	out	there	these	days	as	you	know,	cranking	out
content.	So	how	do	you,	I	guess,	decide	I	want	to	talk	about	keep	fresh	and	make	sure	that	you
being	super	relevant,	like,	Do	you	have	a	specific	content	plan	or	just	whatever	comes	to	mind?

Dave	Farley 05:07
It's	mostly	what	comes	to	mind.	So	I,	the	YouTube	channel,	in	particular,	which	is	a	lot	of	what	I
work	on	these	days,	because	it's	it's	like	a	priming	pump	for	real	things	that	I	do.	Yeah,	but	the
YouTube	channel,	in	particular	is	a	bit	of	a,	you	know,	a	regular	target.	You	know,	once	a	week,
I'm	releasing	something	new.	So	I'm	always	working	to	a	deadline.	And	so	we've	released,
we're	coming	up	on	300	videos,	or	something	so	far	on	that	channel.	So	I	have	some	themes,	I
have	some	topics	that	I	talk	a	lot	about,	one	of	my	big	things	is,	is	automated	testing	and
driving	development	from	automated	testing	as	part	of	the	continuous	delivery	process.	But
also,	I'm	really	interested	in	software	design	and,	and	designing	complicated	design	in
complicated	systems,	in	particular.	And	so	I	talked	about	those	sorts	of	things.	And	largely,	I
just	kind	of,	I'm	always	sort	of,	on	the	lookout	for	ideas.	And	I've	also	spent	quite	a	lot	of	my
time,	my	career	working	as	in	sort	of	technical	leadership	in	teams	and	organisations.	So	I'm
going	to	be	interested	in	the	human	aspect	of	how	we	help	organisations	and	people	to	work
together	to	successfully	build	great	software.	So	I've	got	a	fairly	broad	spreaders	topics	that	I
tend	to	cover	and	talk	about.	And	so	I	might	do	things	well,	I	haven't	talked	about	anything
about	teams	for	a	little	while.	So	I'm	looking	for,	I	think,	on	a	on	a	theme	of	teams,	or	I	haven't
done	a	TDD	thing	for	a	while,	and	so	on.	And	so	and	so	I	usually	lucky,	I	get	to	come	up	with
something	usually.

D

D



Jason	Knight 06:49
Ah,	continuous	delivery	to	your	YouTube	channel	as	well.	So	you're	living	the	dream.	But,
speaking	about	content,	I	remember	speaking	to	our	mutual	friend,	Allen	Holub,	I	know	you
spoke	to	on	your	channel,	I've	had	him	on	the	podcast	before	we	had	a	great	old	time.	But	he's
obviously	got	a	bit	of	a	reputation	for	speaking	his	mind	and	being	very	outspoken	kind	of
absolutist	and	kind	of	bullish.	And	it's	fair	to	say	that	some	people	are	out	there	reacting	well	to
that.	And	some	people	are	out	there	saying,	Well,	I'm	never	gonna	listen	to	this	guy	again.	And
it	does	feel	that	your	approach	is	a	little	bit	more,	let's	say	mellow.	It's	not	that	you	don't
believe	in	many	of	the	same	things	that	he	believes	in,	or	that	he	doesn't	believe	in	the	same
things	that	you	believe	in.	But	you	seem,	maybe	it's	just	you	know,	personalities,	but	you	just
seem	to	be	a	little	bit	more	relaxed	when	you're	talking	about	it.	So	how	do	you	balance	being
kind	of	opinionated	and	wanting	people	to	work	well,	and	giving	those	best	practices	to	people
without	being	too	much	like	that,	but	not	going	too	far	the	other	way	and	like	turning	people
off,	you	are	being	accused	of	being	unrealistic?

Dave	Farley 07:52
Well,	first	of	all,	all	of	those	things	happen	to	me	as	well.	But	also,	before	I	start	there,	let	me
just	say	that	Allen's	a	lovely	guy,	and	...

Jason	Knight 08:04
Oh,	I	love	Allen!

Dave	Farley 08:05
Everything	he	says,	he	always	says,	with	the	best	of	intentions	of	trying	to	help	people	that	I'm
doing	that	too.	So	nothing	that	I'm	going	to	say	now	is	any	criticism	of	Alan,	he	and	I	are	very
close	in	terms	of	our	views	on	how	software	development	should	be	practised	and	the	problems
of	it.	So	I,	I	used	to	work	for	computer	manufacturers	writing	bits	of	operating	systems	and	bios
and	stuff	like	that,	I	ended	my	career	when	I	was	full	time	writing	software	building,	low
latency,	very	ultra	high	performance	trading	systems	of	various	kinds.	And	so	this	goes	kind	of
hardcore	tech.	So	I	am	naturally	I'm	a	geek,	I'm	a	deeply	technical	person.	And	one	of	my
aspects	of	Geekdom	is	that	I	am	very	strongly	engineering	focused.	And	so	part	of	that	for	me,
and	part	of	my	work	is	based	on	trying	to	take	a	very	scientifically	rational	approach	to
addressing	and	understanding	the	ways	in	which	you	work	and	so	on.	So	for	example,	I
promote	ideas	like	test	driven	development,	which	we've	talked	about	continuous	delivery,
trunk	based	development,	continuous	integration,	specific	approaches	to	automated	testing,
have	very	strong	views.	Like	for	example,	if	you	can't	determine	the	reliability	of	your	software,
at	least	once	per	day,	you're	not	practising	continuous	delivery.	But	I	can	kind	of	define	the
reasons	why	all	of	those	are	true,	why	I	believe	all	of	those	to	be	more	than	just	my	opinion.	All
of	those	things	are	very,	very	strongly	correlated	with	success.	And	I	can	point	to	the	evidence,
and	that's	the	way	that	I	go	about	things.	So	I've	started	to	think	about	what	I'm	doing	these
days	as	in	part	being	a	little	bit	one	of	the	science	communicators,	Brian	Fox,	or	David
Attenborough,	somebody	like	that.	I'm	not	on	this	scale,	of	course,	but	I'm	trying	to
communicate	complex	ideas	in	simple	ways,	but	without	dumbing	them	down.	I'm	not	trying	to
create	sound	bites	or	clickbait	or	anything	like	that.	I'm	trying	to	give	you	a	reasoned

D

D



description	of	why	I	believe	what	I'm	saying	is	correct.	And	so	I	come	at	it	from	that	way,	I'm
not	a	person	who	tends	to,	I	will	call	on	expertise	in	other	areas,	but	I'm	not,	I'm	usually	telling
you	what	I	think	rather	than	telling	you	what	somebody	else	is	thinking,	if	you	see	what	I	mean.

Jason	Knight 10:28
I	do,	but	now	I'm	starting	to	think	of	you,	you	know,	walking	along	a	beach	BBC	logo,	talking	in
a	slow	fashion	about	test	driven	development	without	the	pizza	turtles	by	doing	stuff.	This	is
gonna	be	an	amazing	TV	show.	And	I'm	gonna	be	strongly	lobbying	the	Director	General	of	the
BBC	to	get	this	made.

Dave	Farley 10:47
Well,	funnily	enough...!

Jason	Knight 10:50
That's	the	scoop.	But	you	just	said	that	you're	obviously	really	optimising	for	the	technical	side,
like,	that's	your	audience,	you're	deeply	technical	person	yourself,	you're	a	geek	yourself,	as
you	say.	But	at	the	same	time,	a	lot	of	the	enabling	conditions	for	some	of	this	stuff	in	the
companies,	the	messy	companies	that	people	work	for,	also	come	from	non	tech	people.	So	it's
not	always	just	about	winning	the	hearts	and	minds	of	the	developers,	but	also	of	the	people
that	they	work	with,	and	their	leaders	and	the	executive	leadership	of	the	organisation.	So	do
you	recommend	that	those	people	read	your	book,	watch	your	YouTube	videos,	go	on	your
courses,	or	they	need	to	go	and	find	someone	else	that	is	maybe	a	bit	more	in	the	middle	still
believes	the	same	things	as	you.	But	at	the	same	time,	your	stuff	is	so	relentlessly	engineering
focused	that	they	wouldn't	maybe	bond	with	it	so	much.

Dave	Farley 11:38
So	I	aim	very	firmly	to	try	and	make	sure	that	my	stuff	is	accessible.	It	does	have	technical
content,	my	stuff.	And	that	appeals	to	one	segment	of	my	audience,	but	but	the	large	part	of
my	audience	is	usually	people	that	are	experienced	in	software	delivery,	one	way	or	another,	I
have	a	lot	of	people	that	tell	me	that	they're	product	owners	or	project	managers	or	technical
leaders,	CTOs,	those	sorts	of	people	listening	to	my	stuff,	as	well	as	the	hands	on	people.	So
I'm	not	just	cranking	out,	you	know,	saying	this	is	our	Java	works	or	something.	What	I'm
talking	about	is	the	socio	technical	practices	of	what	is	fundamentally	an	engineering	discipline.
This	is	a	way	of	organising	human	beings	collectively	to	solve	technical	problems.	My	favourite
description	of	continuous	delivery,	is	working	in	a	way	so	that	our	software	is	always	in	and
consistently	in	a	releasable	state.	That	has	an	impact	on	everybody,	in	every	role,	even
remotely	connected	with	software	development,	it	has	an	impact	on	the	way	in	which
companies	organise	themselves	as	a	way	in	which	we	structure	the	teams	that	we	work	on	and
divide	at	work.	It	has	something	about	the	way	in	which	we	released	the	change	into	products,
the	way	in	which	we	develop	products,	and	think	about	them	in	terms	of	their	impact	on	users,
and	how	we	collect	information	about	how	they	impact	on	users.	And	when.	And	so	one	of	the
world's	leading	continuous	delivery	companies,	for	example,	is	Tesla.	They	...

D

D



Jason	Knight 13:15
Oh..	Elon!

Dave	Farley 13:16
Yeah.	Whatever	you	think	of	Elon	Musk	and	Tesla	are	remarkably	good	at	being	able	to	target
what	their	users	want,	and	keep	their	products	up	to	date	live	in	production.	That's	a
continuous	delivery	company,	at	multiple	dimensions,	that	simplistic	level,	but	also	deeply	in
terms	of	the	way	factories	work,	and	the	cars	are	built	and	that	are	designed	and	all	of	those
things.	So	ideally,	this	is	a	much	broader	topic	than	only	the	technicalities.

Jason	Knight 13:45
No,	absolutely.	And	I	think	one	of	the	most	interesting	things	that	you	say,	I	think	in	your	book
is	that	everybody	is	responsible	for	the	delivery	process,	which	I	think	really	resonates	certainly
with	me	working	with	all	the	cross	functional	people	that	I	work	with,	and	trying	to	make	sure
that	everyone's	on	the	same	page,	and	that	we're	all	going	in	the	same	direction.	So	I
genuinely	genuinely	agree.	But	if	I'm	not	Elon	Musk,	but	just	some	other	random,	maybe	fairly
tech,	savvy	person,	business	leader,	someone	who	didn't	get	a	spectrum	in	the	80s,	and	like
what	you	said,	sounds	good,	kind	of,	but	I	don't	really	understand	what	the	actual	concrete
benefits	of,	for	example,	software	was	being	in	a	releasable	state.	Like	that	sounds	technical	to
me,	how	would	you	describe	the	concrete	benefits	to	my	business	of	that	being	true?

Dave	Farley 14:35
But	the	concrete	benefits	are	easy	to	express,	because	we've	got	the	data.	So	So	there's	been
a	survey	that's	right	now	run	by	Google.	So	the	company	that	started	this	app	was	bought	out
by	Google.	It's	the	group	within	Google's	called	DORA,	which	is	DevOps	research	and
assessment	group.	And	they	conduct	something	called	the	State	of	DevOps	Report.	And
DevOps	is	I	think	of	a	component	of	continuous	delivery.	DevOps	people	think	it's	the	other	way
around,	but	they're	wrong.	So	so	what	what	that	study	says,	so	over	10s	of	1000s	of	surveys	of
projects	over	many	years,	it	says	things	like,	if	you	practice	continuous	delivery,	your	company
makes	more	money.	If	you	practice	continuous	delivery,	your	your	organisation,	the	people	that
work	for	your	organisations	identify	more	strongly	with	the	organisation.	If	you	practice
Continuous	Delivery	you	built,	you	literally	build	better	software,	higher	quality,	fewer	bugs,
more	maintainable,	faster,	into	production,	teams	with	a	high	score	on	the	metrics,	and	behind
that,	that	study	spend	44%	more	of	their	time,	on	adding	new	features	to	their	product	than
teams	with	low	scores.	These	are	commercial	impacts,	this	is	nothing	at	all	to	do.	It's	not
nothing	to	do.	This	is	a	consequence	of	some	of	the	technical	behaviours,	but	it's	not	because
of	the	technical	behaviours.	And	this	isn't	some	kind	of	technical	nerdy	impurity,	this	is	this	is
engineering	in	the	true	sense	of	the	word	engineering	in	other	disciplines	is	the	stuff	that
works.	If	it	doesn't	work	in	another	discipline,	you	change	it	until	it	does.	That's	what's	going
on.	Now,	with	software.	What	we're	describing	here	is	an	engineering	practice	that	rolls	out
some	of	the	dumb	things	that	we've	done	in	the	past,	and	leaves	the	field	open	for	doing	the
better	things.

D

D



Jason	Knight 16:32
Oh,	I	Well,	let's	talk	about	some	of	the	dumb	things	that	maybe	people	were	doing	in	the	past,
and	I	guess	maybe	some	people	are	still	doing	and	now	because	they	don't	know	any	better,	or
they	haven't	read	your	book	or	watch	your	channel.	What	are	some	of	the	worst	hallmarks	of	a
non	continuous	process	like	things	that	are	holding	engineering	teams	back,	stopping	them
delivering	products	and	realising	business	value?	By	the	presumably	manual	processes	that	are
doing	like,	what	are	some	of	those	processes?

Dave	Farley 16:57
I	think	there	are	two	fundamental	ones	that	I	would	call	out.	One	of	them	I've	kind	of	referred	to
in	the	past	is	kind	of	the	trillion	dollar	mistake.	And	it's	completely	understandable.	But	the
trillion	dollar	mistake	is	confusing	what	it	is	that	we	do	building	software,	we	have
manufacturing,	oh,	no	relationship	whatsoever.	Ours	is	not	a	cookie	cutter	process.	One	of	the
unique	properties	of	software,	digital	assets	anyway,	one	of	the	unique	properties	is	that	the
product	is	a	sequence	of	bytes.	however	big	or	complex,	that	sequence	of	bytes	is	in	terms	of
its	operation	as	a	system,	once	we've	got	a	sequence	of	bytes,	we	can	reproduce	that
sequence	of	bytes	with	zero	defects	for	essentially	zero	cost.	That	means	we	never	have	a
production	problem.	That	means	we	never	have	a	manufacturing	problem.	So	our	problem	is
distinctly	different	from	that.	Our	problem	is	always	because	of	the	economics	of	that,	the
impact	of	that	our	problem	is	always	to	be	creating	something	new,	because	otherwise	we'd	be
being	doing	something	stupid.	If	we're	not	producing	something	new	in	our	context,	then	why
on	earth	are	we	just	taking	and	cloning	for	zero	cost	what	we	had	before?	Yep,	so	we're	always
doing	something	new.	That	means	that	we	must	optimise	for	learning.	That	means	that	every
aspect	of	our	strategy	as	an	organisation,	in	carrying	out	continuous	delivery	is	about	learning.
I've	been	interested	this	week	in	the	launch	of	Apple's	new	virtual	reality,	Reality	One	headset.

Jason	Knight 18:34
The	three	and	a	half	thousand	dollar	VR	thing.

Dave	Farley 18:37
Yeah,	I'm	a	geek,	I'm	interested,	I	think	this	is	going	to	be	some	sort	of	fascinating	thing.	I	want
one	of	these	things,	to	be	able	to	have	these	big	displays	in	front	of	me	and	all	that	kind	of
stuff.	There	are	going	to	be	parts	of	that	that	are	wrong,	there	are	going	to	be	parts	of	that
product	that	don't	land	with	the	users.	There's	a	whole	bunch	of	things.	They	don't	know	what's
going	to	work	at	this	point.	Apple	are,	if	not	the...	it	changes,	but	they're	probably	the	most
successful	company	on	the	planet	at	the	moment	financially.	They	don't	know	what	works,	as
Steve	Jobs	used	to	used	to	you	used	to	say,	how	do	people	know	what	they	want	until	we	tell
them	but	also,	you	know,	we've	got	to	learn.	So	you	know,	the	iPhone,	as	it	came	out	wasn't
the	iPhone	that	we	have	today,	things	evolve	over	time.	This	is	deeply	about	what	modern
engineering	in	general	is	about,	but	profoundly	what	software	is	about.	Software	is	soft,	it's	in
the	name,	the	clues	in	the	name.	So	we	need	to	be	able	to	we	need	to	be	able	to	work	in	ways

D

D



that	we	can	change	it	to	evolve	our	products	and	morph	them	into	the	things	that	our
customers	really	want	to	do	that,	to	optimise	for	that	kind	of	learning.	We've	got	to	think	in
terms	of	designing	products	that	are	changeable	of	gathering	information	back	from	the	users
to	understand	what	what	what	lands	with	the	users	so	that	we	can	learn	from	that	and	adapt	to
it	and	build	the	software	in	a	way	in	ways	that	allow	us	to	do	that	easily.	And	all	of	these	things
are	part	of	But	So	fundamentally,	that's	it.	So	the	second	thing	that	we've	done	in	terms	of	this,
which	is	kind	of	related	to	the	first	thing,	it's	kind	of	the,	the	wrongheaded,	but	understandable
kind	of	production	line	thinking	is	decomposing	the	act	of	delivering	software	into	a	series	of
silos,	a	sequence	of	silos	doesn't	work.	In	order	to	be	able	to	optimise	for	this	kind	of	learning,
we've	got	to	be	working	in	ways	where	we've	got	access	to	all	of	this	deep	flow	of	information,
the	people	that	are	built	the	reality,	one	headset	will	be	deeply	intrigued,	there'll	be	watching
very	deeply	what	people	are	saying	about	it,	because	that's	the	learning	from	it,	not	just	the
product	owner	or	whoever	else,	but	the	developers,	the	technicians,	the	testing,	all	of	those
people	are	engaged	and	interested	in	what	how	their	product	is	landing,	what	it	means.	And
each	of	them	will	be	taking	different	learnings	from	that.	And	we	need	to	structure	to	facilitate
that	kind	of	thing.	We've	also	learned	that,	you	know,	over	the	years,	I'm	a	big	fan	of	the	team
topologies	book,	which	talks	about	ways	of	structuring	organisations	into	smaller	units	of
software	doesn't	scale	very	well,	it's	a	fantastic	book,	if	any	of	your	audience	haven't	read	it,
they	should	go	out	and	buy	it	immediately.	Because	it's	one	of	the	most	...

Jason	Knight 21:15
Yeah,	I	should	get	Matt	on	really,	shouldn't	I?

Dave	Farley 21:16
You	should	get	Matt	on,	or	Manuel.	But	they	are...	it's	a	fantastic	book.	And	it	gives	us	a
language	to	express	ideas	that	have	been	around	for	a	little	while.	But	small	teams	are
dramatically	more	important	than	big	teams.	And	that	means	we've	got	to	organise	everything
that	we	do,	to	be	able	to	have	the	small	autonomous	teams	that	are	responsible	for	their	own
work,	largely	not	handing	it	over	to	silos	of	people	in	different	parts	of	the	organisation.	And	so
building	up	walls	of	bureaucracy	that	slow	everything	down.	One	of	the	other	deeply	profound
findings	from	the	state	of	DevOps	report	is	that	there	is	no	trade	off	between	speed	and
quality.	The	old	story	of	the	Iron	Triangle	is	false.	It's	not	true...

Jason	Knight 22:03
Oh	controversial,	this	is	going	to	break	all	the	project	managers'	hearts!.

Dave	Farley 22:07
Yes,	but	I'm	sorry,	there	aren't.	And	we	have	the	data,	we	have	the	data	now	that	says	that	it's
true.	So	in	order	to	be	able	to	build	high	quality	systems,	you	must	go	fast,	by	which	I	mean,
you	must	make	change	in	small	steps,	small,	safer	steps,	evaluate	the	steps	get	feedback	from

D

D



those	steps	quickly.	And	in	order	to	build	quickly,	you	must	build	high	quality	because	you	can't
afford	to	go	back	and	spend	all	your	time	fixing	the	mistakes	of	last	week,	this	week,	if	you
want	to	build	a	high	quality	system,	if	you	want	to	build	a	system	efficiently.

Jason	Knight 22:41
Yep.	And	obviously,	there's	a	lot	to	unpack	there	that	maybe	people	can	just	let	all	that
knowledge	sort	of	settle	on	their	shoulders.	But	I	want	to	touch	on	the	silos	for	a	minute	there.
Because	that's	something	that	I	think	is	really	important.	And	obviously,	talking	about	cross
functional	teams.	But	one	of	the	things	that	are	one	of	your	videos	that	really	resonated	with
me	a	while	back	was	this	idea	of	the	role	of	quality	assurance	and	testing	within	continuous
delivery	or	just	agile	product	and	project	management	in	general.	Yeah,	and	obviously,	that's
one	of	the	areas	where	product	managers	and	the	rest	of	the	organisation	and	obviously	QA
teams	themselves	outside	that	tends	to	be	one	of	the	common	handover	points	between	the
engineers	and	those	teams,	because	a	lot	of	stuff	gets	built,	then	it	gets	tested,	or	then	it	gives
you	a	T	ID	or	QA	T	ID	or	whatever	it	gets	whichever	t	it	gets	done	to.	But	in	your	mind,	then	if
we're	not	having	these	silos,	and	we're	not	having	these	status	codes,	like	what	is	the	specific
role	of	QA,	and	indeed,	manual	testing	in	a	continuous	delivery	world?

Dave	Farley 23:41
Well,	first,	first	of	all,	that	the	idea	of,	of	manual	testing	is	never	regression	testing.	In	my	view,
I	think	we	use	automated	tests	for	that.	Yep.	Humans	are	not	good	at	being	repeatable	and
reliable.	So	we	want	to	automate	all	of	the	regression	testing.	So	that	leaves	us	with	a	need	for
the	kinds	of	things	that	human	beings	are	good	at,	we're	probably	never	going	to	write	an
automated	test	that	says,	Does	this	blue	button	have	blue	text	on	it?	Like	human	beings	in	this
spot,	that	kind	of	mistake	immediately,	that	kind	of	sensory	thing	that	kind	of	impacting	the
kind	of	does	this	paint	mental	models	in	my	head	that	allow	me	to	extrapolate	and	move	on	to
the	next	useful	things	I	want	to	do	with	the	software?	Those	things	are	not	not	easy	to
automate?	And	so	humans	are	great	at	that.	But	the	key	idea	in	terms	of	the,	you	know,	the
role	of	QA,	I	think,	again,	the	mistake	that	the	siloing	mistake,	is	where	you	put	it	in	the
development	process.	If	we're	going	to	build	high	quality	systems,	you	don't	get	that	by	waiting
until	you're	finished	and	they're	looking	at	it	and	say,	Now,	that's	crap.	You	get	that	by	building
the	quality	into	the	system	from	the	first	place,	Deming	that	the	kind	of	father	of	lean
manufacturing...	the	grandfather	rarely	of	lean	manufacturing	said,	you	don't	inspect	quality
into	a	product	you	build	it	in.	So	what	we	want	is	that	we	want	to	organise	our	work	in	a	way.
So	that	we	are	building	with	high	quality.	If	you	imagine	making	something	physical,	then	the
equivalent	of	that	is	making	sure	that	you	measure	things	before	you	build	them	and	or
measure	things	as	you're	building	them,	and	then	fitting	the	pieces	together	and	seeing
whether	they	work.	And	we	can	do	the	same	thing	with	software.	So	that's	what	test	driven
development	is	about.	It's	the	equivalent	of	being	able	to	do	that	building	little	jigs	in	which	we
could	try	out	our	ideas,	and,	and	so	on.	So	there's	a	role	of	quality	bringing	that	up	front	into
the	development	process.	So	one	of	the	ideas	that	I	promote	to	my	clients	and	through	my
channels	is	the	idea	of	acceptance	test	driven	development.	So	we've	got,	we	start	off	the
development	process	early	in	the	development	process	anyway,	early	in	the	kickoff,	we	create
an	executable	specification	that	describes	the	behaviour	that	we	want	from	the	system	doesn't
say	how	the	system	works,	but	it	says	what	the	system	is	meant	to	do.	And	so	that's	a	great
role	for	QA	people,	because	testing	professionals	think	about	these	things	differently,	they	will

D



come	up	with	interesting,	new	ideas,	it's	also	a	good	idea.	Often	it	has	a	good	impact	on	the
kind	of	product	design,	because	they're	thinking	in	terms	of	the	utility	of	the	system,	you
understand	the	belief	system,	and	all	of	those	kinds	of	things.	And	so	we	want	them	engaged
early	in	the	development	process	before	we	built	the	stuff,	ideally,	before	and	during,	while
we're	building	this	stuff,	so	they	can	be	doing	the	they	can	help	us	get	these	specifications	into
better	shape	at	the	start.	And	then	they	can	help	us	to	to	do	that	more	qualitative,	exploratory
testing,	as	the	software	is	evolving	and	being	developed,	as	new	features	are	being	added	not
only	when	they're	finished,	leaving	it	until	the	software	is	notionally	finished,	is	throwing	it	over
the	wall.	And	it's	too	late.	As	a	developer,	it's	no	good	you	coming	to	me,	after	I	finished	saying
that	I	didn't	do	a	good	enough	job,	I	want	you	to	tell	me	that	I'm	not	doing	a	good	enough	job
while	I'm	not	doing	a	good	enough	job.	And	then	I	can	correct	it.

Jason	Knight 27:14
Yeah,	that's	really	interesting,	and	I	think	speaks	a	lot	to	the	idea	that,	I	mean,	this	is
something	that	people	talk	about	in	product	circles	all	the	time,	like	the	handoffs	or	the
relationships	between	product	and	QA	teams	and	engineering	teams,	and	like	when	people
should	be	involved	in	the	process.	And	I'm	a	big	fan	of	getting	everyone	involved	way	up	front.
Yes.	So	that	everyone	knows	what	they're	doing	from	the	start,	rather	than	someone	trying	to
craft	some	perfect	little	document	that	says	everything,	and	then	send	it	over	there	gets
developed,	and	then	the	QA	team	see	after	that,	and	then	they	test	it,	it	just,	it	just	all	seems
kind	of	a	bit.	Like	there's	the	sound	how	that's	supposed	to	work!

Dave	Farley 27:49
Indeed	and	it	doesn't	really	I	don't	think	you've	read.	I've	been	building	software	in	virtually
every	way	that	you	can	imagine	our	guests	during	the	course	of	my	career.	And	I've	worked	on
lots	of	teams	that	didn't	work	very	well,	I've	worked	on	lots	of	on	what	the	software	projects
that	didn't,	it	didn't	work	very	well.	And	you	know,	I	think	I	spotted	some	patterns.	And	all	I've
also	been	fortunate	to	work	on	some	software	that	other	people	have	called	great	and	on
teams	that	other	people	have	called	great.	And	it	seems	to	me	that	you	know,	what	makes
those	teams	great	is	not	that	they're	populated	with	geniuses,	but	that	they	are	so	much	more
collaborative	than	normal.	There's	some	lovely	data	from	years	and	years	ago,	I	remember
reading	back	in	the	90s.	Some	time,	there	was	some	research	done	into	the	real	Rockstar,	high
performing	developers,	the	10x.	Developers,	everybody	loads.	And	they	did	this	research	over
hundreds	of	projects.	And	they	were	trying	to	identify	what	it	was	that	these	10x	Rockstar
developers	had,	and	what	the	only	thing	that	they	could	point	to	that	was	different.	And	that
they	shared	in	common,	these	great	performers	was	that	they	talked	to	other	people	more
often.

Jason	Knight 29:12
Oh...	developers	don't	like	that	sort	of	thing.	Half	the	time,	if	you've	worked	with	the	same
developers	I	have,	which	I'm	sure	you	have	at	some	point.

Dave	Farley 29:17

D

D



Dave	Farley 29:17
Yeah,	but	what	the	data	says	and	I	don't	mean	to	be	rude	to	anybody.	But	what	the	data	says	is
that	those	aren't	the	great	developers,	the	great	developers	talk	to	people	all	the	time.

Jason	Knight 29:26
So	like	those	ones,	I'd	be	listening	to	this.	But	it's	not	just	the	product	and	the	QA	silo.	There's
another	silo	or	maybe	another	kind	of	stage	gate	or	even	a	waterfall,	if	we	should	even	use	that
term.	That	does	exist	in	some	firms,	especially	b2b	businesses,	setting	and	maybe	to	larger
enterprises	as	well.	This	is	the	kind	of	the	idea	that	from	the	commercial	side	of	the	business
that	they've	kind	of	got	their	own	waterfall	that	they	want	you	to	slipstream	into	because
maybe	there's	some	press	releases	or	marketing	rhythm	that	they	want	to	get	into	or	their
trade	shows	or	maybe	there's	even	fairly	conservative	customers	that	don't	want	the	system	to
change	all	the	time,	because	it's	some	business	critical	back	office	system,	and	they	kind	of
just	want	it	to	stay	the	same	isn't	a	way	to	competently	make	continuous	delivery	work	with
the	rest	of	the	quote	unquote,	business?

Dave	Farley 30:14
Well,	yes,	it's	still	the	best	way	of	working,	it	is	the	best	way	of	working.	So	it	will	do	the	best
job.	And	whether	you're	targeting	a	particular	date,	or	a	particular	set	of	features,	it	will	do	the
best	job	of	either	one,	what's	impossible,	what's	irrational.	And	it	doesn't	matter	what	the
process	is.	But	what's	irrational	is	to	try	and	fix	both	time	and	scope.	And	people	have	known
this	for	years,	you	know,	the	project	management	books	have	been	saying	this	for	four	years,
you	can't	fix	time	and	scope.	And	then	everybody,	nearly	all	organisations	go	and	try	and	do	it.
Which	is,	which	is,	which	is	just	irrational.	So	continuous	delivery	is	working.	So	our	software	is
always	in	a	releasable	state.	So	I	can	guarantee	you	that	we're	going	to	hit	the	release	date,	I
can't	tell	you	what	I'll	be	in	by	that	release	date.	But	we'll	hit	the	release	date!	Or...	continuous
delivery	is	the	most	efficient	way	of	building	software.	So	we	can	build	you	whatever	it	is	that
you	want,	faster	than	other	ways	of	working	can.	But	I	can't	tell	you	when	you'll	get	it.	So	which
one	do	you	want?

Jason	Knight 31:24
But	the	follow	up	there,	I	guess	is	whether	the	fact	that	you're	able	to	release	your	software
continuously	means	that	you	have	to	release	your	software	continuously.

Dave	Farley 31:34
Now,	it's	a	good	question.	And	a	confusing	one.	And	the	confusion	is,	is	down	to	me	and	people
like	me,	because	the	terminology	is	confusing.	So	the	way	that	I	describe	it	is	that	continuous
delivery	is	about	working	so	our	software	is	always	releasable.	We	don't	have	to	exercise	the
release,	we	don't	have	to	do	that	that's	business	contextual.	That's	a	decision	for	the	business
about	what	makes	sense.	Now	there	are	lots	of	good	reasons	why	it's	a	good	idea	to	release
more	frequently.	But	you	don't	have	to	be	practising	continuous	delivery.	There's	another	CD,
which	is	continuous	deployment,	which	is	a	subset	of	continuous	delivery,	which	is,	essentially
what	we	do	is	that	we	just	automate	the	decision	to	release.	In	continuous	delivery,	we	usually

D

D



build	something	called	a	deployment	pipeline,	which	is	an	automated	validation	that	our
changes	are	good,	fast	enough,	secure	enough,	whatever	it	takes	to	make	determine	that
they're	releasable.	So	we	use	a	deployment	pipeline	to	determine	that	our	changes	are	ready
for	release.	And	then	if	all	of	it	if	our	pipeline	says	it's	good	in	continuous	deployment,	we	just
automate	it,	we	just	push	the	change	out	into	production.	And	that's	fantastic.	But	you	don't
have	to	do	that.

Jason	Knight 32:42
What	about	things	I	feature	flags?	Is	that	something	you	advocate?	So	for	example,	making
sure	you	do	deploy	everything,	but	you	kind	of	have	some	method	to	turn	stuff	on	and	off,
maybe	either	globally	or	just	for	certain	beta	customers	or	something	like	that.	Is	that
something	that	you	support?

Dave	Farley 32:56
Yes.	So	one	of	the	more	challenging	things	that	is	a	consequence	of	the	way	in	which	we	work.
So	part	of	my	definition	for	continuous	delivery,	is	that	whatever	the	scale	of	your	software,	you
can	determine	the	release	stability	of	your	software	at	least	once	per	day.	Now,	if	you	think
about	a	conventional	development,	and	you've	got	a	developer	that	goes	and	lock	themselves
away	in	a	basement	with	their	headphones,	working	on	a	branch	somewhere	for	a	few	weeks,
we	don't	know	that	our	software	is	releasable.	If	we	include	their	software,	we	don't	know
whether	their	software	is	going	to	clash	with	the	the	other	developer	in	a	different	basement
software.	We	don't	know	whether	it's	going	to	break	everything.	So	the	way	in	which	we
evaluate	that	is	through	continuous	integration,	we	make	progress	in	tiny	little	changes	that
don't	all	necessarily	add	up	to	complete	features.	And	we	evaluate	those	changes	multiple
times	throughout	the	day,	getting	really	fast,	fine	grained	feedback,	as	our	software	evolves
and	and	gets	more	and	more	functional.	That	means	in	a	continuous	delivery	world,	the
consequence	of	that	is	that	as	software's	releasable.	So	if	the	deployment	pipeline	says	that's
all	good,	it	might	go	out	into	production.	We	don't	know	that	it	will,	but	it	might.	So	yes,	now	we
need	techniques	like	feature	flags	to	be	able	to	turn	off	the	stuff	that	says,	actually,	that	bit	is
not	ready	for	users	yet.	It's	working.	It's	tested,	we	know	it's	safe,	but	it's	not	yet	ready	for
users.	And	it	turns	out	this	this	sounds,	this	sounds	sketchy.	This	sounds	like	a	lower	quality
solution.	But	the	reality	is	opposite.	The	data	says	that	this	is	the	safer	way	to	make	changes.
And	then	if	you	think	about	the	reason	why	is	interesting,	it's	all	about	these	small	steps.	If	I
make	a	big	complicated	change,	then	there	could	be	really	nasty	things	hiding	in	that	big
complicated	change.	If	I	make	a	tiny	little	change,	that's	just	one	or	two	lines	of	code.	I'm	going
to	be	pretty	confident	that	I	know	what's	in	there,	you	find	a	test	that	code	and	evaluate	those
and	all	my	tests	pass,	I'm	fairly	confident	that	it's	safe.	And	even	if	it	wasn't,	it'd	be	really	easy
to	back	it	out	again.	So	it	turns	out	that	working	in	these	tiny	steps,	even	for	safety	critical
systems,	is	a	safer	way	of	working.

Jason	Knight 35:18
What	I'm	so	old,	but	I'm	assuming	that	some	of	the	people	you	go	into	or	maybe	some	of	the
people	you	engage	with	out	there	with	your	content,	or	just	some	people	that	you	bump	into	a
cocktail	parties,	or	all	these	other	things	that	consultants	of	your	success	go	to	some	people

D



out	there,	they're	gonna	be	like,	sorry,	Dave,	that	doesn't	sound	any	good	to	me.	I	don't	think
we	could	do	that	here.	So	what	are	some	of	the	most	common	objections	you	hear	from	people
when	you're	promoting	continuous	delivery,	but	they	just	don't	think	it's	for	them?

Dave	Farley 35:43
There's,	so	my	co	author	on	Continuous	Delivery	was	Jez	Humble.	And	he	had	he	had	a	great
conference	presentation	a	few	years	ago,	called	something	like	it	couldn't	work	here.	And	he
came	to	the	conclusion	that	all	of	the	objections,	boiled	down	to	three	different	categories	are
software's	crap,	our	organization's	crap,	or	our	people	are	crap.	And	if	any	of	those	is	true,	then
you	fix	it.	I	have	that	conversation	all	the	time.	You're	quite	right.	And	I'm	belittling	it.	But	I	just
wanted	to	point	people	in	the	direction	of	a	good	YouTube	presentation...

Jason	Knight 36:21
Yeah,	I'll	find	it	and	put	it	in	the	show	notes.

Dave	Farley 36:23
Yeah,	it's	really	good.	It's	funny.	Jez	is	a	great	talker.	But	I	think	it's	a	reasonable	summary.	So
the	data	is	on	my	side,	I	think	I	can	give	a	reason	for	the	way	that	these	things	work.	And	I
think	that's	coherent.	And	if	people	can	show,	you	know,	show	me	holes	in	my	reasoning,	I'm
going	to	be	grateful	to	them,	because	I'm	a	scientific	rationalist.	And	that's,	that's	the	way	I
learned.	So,	you	know,	I'm	interested	in	these	sorts	of	conversations.	It	used	to	be	that	I
wouldn't	be	as	bombastic	as	I	have	been	today,	talking	about	things	like	safety	critical	systems,
because	I	didn't	have	the	evidence.	I	could	talk	about	finance	systems,	I	could	talk	about
commercial	systems.	And	those	are	things	I	couldn't	direct	safety,	Chris	was	putting	now	I've
seen	it	work.	Now	we've	got	the	evidence,	I	can	literally	point	you	to	companies	that	build
space	rockets	that	do	continuous	delivery	for	space	rockets,	I	can	point	you	to	Tesla,	that	build
cars,	they	can	make	a	change	in	software	that	changes	the	production	line	in	under	three
hours.	You	know,	there'll	be	churning	out	different	cars	in	three	hours.	That's	the	kind	of
change	that	we're	talking	about	here.	The	US	military	are	applying	continuous	delivery	to
software	in	fighter	jets	and	your	other	defence	systems.	So	this	way,	we	can	No,	I	don't	think
that	there's	any	category	that	you	like,	there's	bound	to	be	some	kind	of	corner	case	that	I
can't	think	of.	But	there's	no	such	a	broad	category.	It	works	for	embedded	systems,	it	works
for	finance	systems,	it	works	for	regulated	systems,	medical	systems,	automotive	systems,
games,	anything	that	you	can	think	of,	you	can	kind	of	point	to	an	example	somewhere	of
somebody	that	works	this	way.	And	so	there's	not	that	kind	of	the	barrier.	So	then	there's	the
argument	about,	you	know,	your	people	not	been	able	to	do	this	or	your	software	been	in	the
wrong	shape.	And	yes,	if	you've	got	a	an	old	legacy	system	that	wasn't	designed	to	work	this
way.	That's	a	challenge.	It's	more	difficult	than	starting	from	a	blank	sheet	of	paper.	But	there
are	well	trodden	paths	to	alleviate	it's	horrible,	hard,	grungy	work	to	tread	that	path.	It's	not	an
easy	move.	But	it's	completely	doable.	And	the	vast	majority	of	organisations	that	end	up	as
practising	Continuous	Delivery	organisations	started	from	there,	not	with	a	blank	sheet	of
paper.	And	then	there's	the	then	there's	the	problem,	but	oh,	yeah,	well,	this	is	great	for	Tesla,
and	Google	and	Amazon,	but	they're	all	geniuses	and,	and	my	team	is	not	geniuses.	That's	not
true,	either.	So	you	know,	all	of	the	data	or	all	of	the	evidence	is	that	it's	much	more	about	the

D

D



way	in	which	people	work	than	who	turns	up	to	do	the	work.	In	fact,	Google	did	research	across
180	teams,	I've	repeated	three	years	to	try	and	identify	what	made	the	really	high	performing
teams.	And	I	think,	well,	I'm	pretty	damn	sure	that	what	they	were	looking	for	was	all	this
combination	of	skills,	and	this,	this	level	of	expertise,	and	all	that	kind	of	stuff.	And	it	was	none
of	that.	The	number	one	correlation	for	the	highest	performing	teams	was	the	degree	to	which
the	people	that	worked	on	the	teams	trusted	one	another,	and	worked	together	and	the	way	in
which	they	organise	their	work.	So	this	works	for	beginners.	We've	got	examples	of	that.	It
works	for	experts,	you've	got	examples	of	that.	And	we've	got	in	virtually	every	version	of
difficulty	that	you	can	think	of	the	downside	of	continuous	delivery,	is	really	what	I	mentioned
earlier,	it's	not	an	easy	change	to	make.	This	is	challenging.	This	challenge	is	nearly	every
preconception	that	most	organisations	and	most	people	have	about	software	development	at
some	level.	And	that's	not	an	easy	thing	to	deal	with.	If	I	could	wave	a	magic	wand	and	get
over	that	problem,	I'd	be	a	very	wealthy	man,	I	think	Because	because	nearly	nearly	everybody
wants	to	work	this	way,	but	it's	just	hard	to	get	there.	But	it's	possible	in	my	experience.

Jason	Knight 40:08
But	where	does	much	of	the	pushback	come	from	then?	Like,	is	it	coming	from	the	developers
themselves?	The	engineering	teams,	maybe	the	CTOs	or	the	VPs	of	engineering?	Or	are	they
kind	of	well	up	for	it,	but	it's	the	commercial	side,	the	leadership	teams,	the	product	side	that
are	holding	them	back	and	not	giving	them	time	to	do	it?	Or	is	it	kind	of	both?

Dave	Farley 40:28
I	think	the	simplest	answer	is	that	it's	both,	you	did	get	different	pushback	from	different
groups	of	people.	There	was	a	good	Harvard	Business	Review	article	a	couple	of	years	ago,	I'm
going	to	paraphrase	it	terribly,	because	I	can't	remember	off	the	top	of	my	head.	But	it	said
something	along	the	lines	of	high	end,	agile	development	has	proven	itself,	the	barrier	is	not
demonstration	that	it	can	work.	It's	not	evidence	or	the	adaption	to	particular	promises.	It's	the
behaviour	of	executives	in	organisations.	It's	the	traditional	thinking	in	leadership	in
organisations.	And	I	think	there's,	there's	definitely	a	strong	part	of	that.	That's	true.	I	think	that
many	people,	I	think	that	many	people	are	in	the	trillion	dollar	mistake,	they're	thinking	of	this
as	a	manufacturing	process.	And	they	tried	to	apply,	essentially,	the	techniques	of	a	building	a
production	line	to	something	that	a	production	line	and	doesn't	work	with	production	lines,
developers	push	back	for	different	readers,	if	you're	a	developer	in	a	certain	kind	of
organisation.	And	the	requirements	aren't	really	requirements,	the	requirements	are	just
instructions	for	you	to	code	as	a	solution	in	a	certain	way.	And	you're	not	responsible	for	the
quality	of	the	software,	that's	a	fairly	easy	life,	you	get	paid	reasonably	well,	to	translate	what
is	what's	essentially	code	written	in	English	or	another	human	language	into	code	written	into	a
programming	language.	That's	a	fairly	easy	life.	It's	not	software	development,	it's	just	coding.
But	software	developments	more	complicated	than	that.	So	there's	some	pushback.	So
developers	don't	really	want	to	do	their	own	testing,	sometimes,	if	they've	not	been	used	to
that	they	don't	really	want	to	take	responsibility	for	the	design	of	the	software,	because	they
used	to	be	told	those	things,	and	they	don't	want	to	take	responsibility	to	the	quality	of	it	as
well	that	somebody	else	is	looking	after	them.	Those	are	the	kinds	of	barriers	and	getting
people	to	adopt	these	sorts	of	behaviours	is	difficult	and	challenging.	But	I	don't	know	any

D



organisation.	Or	really,	I	don't	know,	any	individual	that's	gone	through	this	transformation,	I
suppose,	into	this	new	way	of	working,	that	would	willingly	go	back	and	work	in	the	old	way,
once	they've	experienced	it.	It	is	like	the,	you	know,	the	walls	falling	from	your	eyes.

Jason	Knight 42:44
All	right,	so	let's	assume	then,	I	mean,	again,	this	is	podcasts	primarily	listened	to	by	people
building	products,	either	product	managers,	some	developers,	some	designers,	startup
founders,	all	of	those	people,	many	of	whom	might	be	listening	to	this	thinking,	What	can	I	do
to	help	developers	get	into	this	mindset?	Or	help	buy	them	space	to	we	can't	even	fix	our
generic	tech	debt?	Yeah,	let	alone	the	entire	way	that	we	deliver	software?	Yeah.	What	can
product	managers	do	to	help	to	advocate	for	some	of	these	practices,	or	try	to	help	to	embed
them	within	organisations	and	maybe	join	in	with	the	persuading?

Dave	Farley 43:22
I	think	that	there	are	a	few	things,	as	you	pointed	out,	I'm	a	consultant.	And	one	of	the	ways...

Jason	Knight 43:29
They	sould	just	hire	you!

Dave	Farley 43:31
No,	no,	I	wasn't,	I	wasn't,	I'm	very	expensive,	and	my	time's	very...

Jason	Knight 43:37
They	can	hire	me,	it'll	be	fine.

Dave	Farley 43:41
But	I,	you	know,	I	kind	of	come	up	with	these	mental	models	of	what	it	is	that's	going	on.	And
one	of	my	mental,	you	know,	I've	got	this	kind	of	model	of	an	ideal	organisation.	And	then	what
I'm	usually	trying	to	do	is	I'm	trying	to	say,	so	how	can	we	move	you	in	the	direction	of	this
idea?	That's	kind	of	partly	the	game	that	I	play?	One	of	the	attributes	of	this	ideal	organisation
is	I	think	that	in	an	ideal	organisation,	that	every	individual	would	be	responsible	for	their	own
work	would	be	able	to	see	the	consequences	of	their	decisions,	good	or	bad,	and	learn	from
them.	I	think	that's	a	reasonably	good	thought	experiment	for	what	that	would	be	like.	So	what
would	that	mean	for	a	product	owner?	So	So	one	of	the	big	mistakes	I	think	that	that's,	that
seems	to	be	very,	very,	very	common	in	the	kinds	of	organisations	that	I	consulting,	at	least,	is
that	the	requirements	process	has	been	denatured	to	the	point	where	it's	no	longer	really	a
requirements	process.	It's	a	design	process.	So	requirements	are	put	this	button	on	the	screen
here,	add	this	column	to	the	database,	make	that	faster.	These	aren't	requirements.

D

D

D



Requirements	are	things	that	users	want	of	the	system.	So	people	like	product	owners	should
start	to	really,	really	focusing	on	trying	to	describe	behaviours	that	users	want	from	the
system,	you	could	think	of	software	development	as	a	translation	process.	And	our	aim	is	to
organise	it	into	a	series	of	small	translation	steps,	each	step	to	be	reasonable,	a	reasonably
small	step	from	the	previous	one.	So	the	starting	point	is	nearly	always	somebody's	kind	of
vague	wish	of	what	they	what	they	wish	the	software	that	would	do	that	it	doesn't	do	now.	And
then	the	next	step	after	that	is	to	capture	that	in	the	form	of	some	form	of	user	story,	we'd	like
to	tell	a	little	story	about	a	user	using	the	system,	from	the	perspective	of	that	user,	say
nothing	at	all	about	how	the	system	should	work.	Nothing,	it's	not	even	that	there	are	buttons
on	the	screen	of	all	fields	to	enter	when	we're	thinking	solely.	I'm	a	user,	I'd	like	to,	I'd	like	to
order	a	book.	And	I'd	like	to	get	the	book	back,	you	know.	So	then,	the	next	little	translation
step	is	to	come	up	with	an	example	that	if	that	example	existed,	demonstrated	that	this	wish
that's	captured	in	our	user	story	would	have	been	met.	But	the	need	that	was	described	had
been	met.	And	then	we're	getting	towards	the	technical	end.	Now,	if	we	could	translate	those
examples	into	executable	specifications.	That	said,	I	observed	or,	you	know,	I,	here's	all	the
setup	of	this	scenario,	I	observe	that	this	behaviour	exists	in	the	system.	And	still,	that
executable	specification	doesn't	say	how	the	software	works.	And	the	job	of	the	software
development	team	is	to	take	that	specification	and	translate	that	into	working	software,	it's
their	job	to	come	up	with	a	solution,	it's	not	somebody	else	upstreams,	to	tell	them	what	the
answer	is,	somebody	else	the	job	of	the	upstream	process,	and	people	is	to	define	the	need,
and	to	express	that	as	clearly	and	concisely	as	we	can.	So	one	of	the	things	that	product
owners	could	do	is	start	censoring	themselves	and	not	allow	ourselves	to	say	what	the	answer
is	not	allowing	themselves	to	define	what	the	solution	to	the	problem	is,	that	can	that	can	have
the	conversation.	But	in	the	written	materials	in	the	in	the	artefacts	that	we	create	in	the
communications	that	we	establish,	their	job	is	to	focus	on	the	customer	need,	and	represent
that	through	the	process,	in	my	view.	The	other	one	is	to	think	about,	you	know,	how	could	we
learn	that?	So	a	product	owners	job	is	going	well,	if	they're	coming	up	with	ideas	that	users
like?	So	you	want	feedback	from	the	real	world?	On	those	ideas?	So	thinking	about	ways	in
which	we	could	evaluate	those?	What's	the	point	of	this	feature?	Is	it	to	recruit	more	users?	Is	it
to	narrow	the	margins	on	our	sales	or	whatever	else?	It	is,	I	don't	know.	But	those	sorts	of	ideas
so	that	we've	got	some	kind	of	way	of	measuring	success.	And	using	the	kind	of	Site	Reliability
Engineering	sorts	of	techniques	of	stating	what	that	experiment,	you	know,	HCH	features	and
experiment	and	state	what	the	goals	of	the	experimenter,	as	part	of	the	requirements	process
would	be	nice.	And	then	there's	the,	you	know,	how	do	we	learn	from	that?	Well,	success	is	due
the	features	that	we're	specifying	in	this	way,	help	teams	to	develop	high	quality	software	more
quickly.	And	if	they	don't,	if	they're	getting	in	the	way,	then	there's	a	problem.	And	that
problem	needs	addressing.

Jason	Knight 48:27
No,	absolutely.	Well,	again,	a	lot	there	to	think	about.	And,	you	know,	personally,	from	my
perspective,	I'm	really,	really	keen	and	we	touched	on	it	before	to	get	everyone	involved,	as
soon	as	possible,	really	drive	home,	that	kind	of	collaborative	attitude,	and	not	just	we	talked
about	it	not	pass	the	ball	back	and	forth.	Or,	in	some	cases,	like	a	dog,	a	bag	of	dog	poop,	is
getting	passed	back	and	forward	and	no	one	quite	wants	to	hold	of	it.	I've	definitely	been	in
situations	before	where	every	time	you	wanted	to	release	software,	it	was	almost	like	someone
myself	a	stink	grenade	in	the	office,	everyone	just	wanted	to	be	there	when	when	the	software
was	ready	to	be	released.	But	in	any	case,	I	think	it's	definitely	some	inspiration	for	product
teams,	and	hopefully,	their	cross	functional	colleagues	and	maybe	even	their	leaders	to	think	a
little	bit	differently	and	maybe	start	to	think	about	how	they	might	make	everyone's	lives	a



little	bit	easier.	But	where	can	people	find	you,	Dave?	After	this,	if	they	want	to	find	out	more
about	your	course	your	content,	talk	about	continuous	delivery,	or	see	if	they	can	tap	you	up
for	any	flying	lessons?

Dave	Farley 49:26
Yeah,	so	the	easiest	way	to	find	me	is	probably	go	to	YouTube	and	search	for	continuous
delivery.	And	you'll	find	my	channel.	I'm	also	a	regular	on	Twitter,	still	mastered	and	as	well	but
Twitter	is	@davefarley77.

Jason	Knight 49:42
Holding	on	by	your	fingernails!

Dave	Farley 49:45
Yeah,	still	there	at	the	moment.	And	there	are	there	are	lots	of	other	ways	that	you	can	find	me
from	there.	My	courses...	they're	getting	great	feedback	and	they	teach	teams	and
organisations	to	do	the	kinds	of	things	that	we've	been	talking	about.	So	that's	really	what
they're	about.	If	you're	interested	in	that,	go	to	https://courses.cd.training/

Jason	Knight 50:05
There	you	go.	Well,	I	made	sure	to	link	that	all	into	the	show	notes.	And	hopefully	I'll	have	a
continuous	stream	of	people	hadn't	straight	in	a	direction.	Thank	you.	Well,	that's	been	a
fantastic	chat.	So	obviously,	really	appreciate	you	spending	some	of	your	valuable	time	sharing
some	of	your	pearls	of	wisdom,	and	hopefully	helping	us	to	inspire	people	around	the	world	to
think	a	little	bit	differently.	Hopefully,	we	can	stay	in	touch	but	yeah,	so	now	thanks	for	taking
the	time.

Dave	Farley 50:27
It's	my	pleasure.	Thank	you.

Jason	Knight 50:30
As	always,	thanks	for	listening.	I	hope	you	found	the	episode	inspiring	and	insightful.	If	you	did
again,	I	can	only	encourage	you	to	hop	over	to	https://www.oneknightinproduct.com.	Check	out
some	of	my	other	fantastic	guests.	Sign	up	to	the	mailing	list,	subscribe	on	your	favourite
podcast	app	and	make	sure	you	share	your	friends	so	you	and	they	can	never	miss	another
episode	again.	I'll	be	back	soon	with	another	inspiring	guest	but	as	for	now,	thanks	and	good
night.

D

D

D




